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Chapter 1: Introduction 
 

This section contains the following topics: 

SOLVE Subsystem Interface (see page 9) 

Products Supported (see page 10) 
 

SOLVE Subsystem Interface 

SOLVE Subsystem Interface is an implementation of IBM’s subsystem 

interface (SSI). The interface provides a general-purpose facility that allows 

product regions to communicate with other software on a system. It uses an 

SSIDB to store information such as business application name definitions for CA 

NetMaster NM for TCP/IP. One SOLVE SSI can serve multiple product regions. 

SOLVE SSI provides the following facilities: 

■ DD SUBSYS 

■ Event notification facility (ENF) event listener 

■ Inter-SSI communication 

■ Packet Analyzer and SmartTrace 

■ Program-to-Program Interface (PPI) 

■ SMF record intercept 
 



Products Supported 

 

10  SOLVE Subsystem Interface Guide 

 

Products Supported 

The SOLVE SSI component provides essential services to the following products: 

■ CA Mainframe Network Management product family: 

– CA NetMaster FTM 

– CA NetMaster NA 

– CA NetMaster NM for SNA 

– CA NetMaster NM for TCP/IP 

■ CA SOLVE:Access 

■ CA SOLVE:Central 

■ CA SOLVE:Operations Automation product family: 

– CA SOLVE:Operations Automation 

– CA SOLVE:Operations Automation for CICS 
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Chapter 2: Implementation 
 

This section contains the following topics: 

Deployment (see page 11) 

SOLVE SSI as Common Component (see page 12) 

Multiple Instances of SOLVE SSI on the Same System (see page 13) 
 

Deployment 

SOLVE SSI runs as a started task that was built when your product was installed. 

The common Install Utility sets up the SOLVE SSI component based on the 

products you want the component to serve. 

For each region that you want to connect to the SOLVE SSI, the interface ID is 

specified in one of the following locations: 

■ Sub-System Interface ID field of the SSI parameter group in Customizer 

■ SSID JCL parameter in the region’s RUNSYSIN member 

Note: For more information about implementing SOLVE SSI, see Installation 

Guide. 

When you run your product on multiple systems, you set up a SOLVE SSI on each 

system. You can set up the SSIs using the following methods: 

■ Use the Install Utility to set up each of the SSIs. 

■ Use the Install Utility to set up one SSI, and then replicate the generated 

data sets such as the SSIDB and SSIPARM. 

■ Use the Install Utility to set up one SSI, share data sets such as the 

SSIPARM, and replicate the SSIDB. 

Note: If you are upgrading a SOLVE SSI, use your existing SSIDB to retain 

stored information. 
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SOLVE SSI as Common Component 

The SOLVE SSI is a common component for multiple CA product families and can 

serve multiple product regions on a system. The following methods are available: 

■ One shared SSI to serve all product families. 

■ A separate SSI for each product family (CA Mainframe Network 

Management, CA SOLVE:Operations Automation, and CA SOLVE:Access). 

■ A mix of the first two methods, for example, CA SOLVE:Access has its own 

SSI and CA Mainframe Network Management and CA SOLVE:Operations 

Automation share an SSI. 
 

How You Share a SOLVE SSI Between All Products 

The Install Utility can help you share a SOLVE SSI between all supported 

products on a system. Products are released by families. Usually, when a product 

family is released, the release comes with an updated version of the SSI. When 

you share the SSI, use the latest version. The following process guides you in 

sharing an SSI: 

1. Use the Install Utility that comes with the latest release to set up your SSI. 

a. If there is an existing SSI, use the existing subsystem identifier for the 

new SSI. 

b. Select the products you want the new SSI to serve. 

c. Complete the setup. 

2. Replace the existing SSI with the new SSI. Because you use the same 

subsystem identifier for the new SSI, product regions that require an SSI 

connect to the new SSI seamlessly. 
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How You Configure a SOLVE SSI for a Product Family 

If you use a separate SOLVE SSI for each family, you can potentially run up to 

three instances of the SSI on the same system. Some SSI initialization 

parameters are restricted to be set only once on a system. The Install Utility can 

help you set up an SSI for each product family, but the utility can potentially 

specify a restricted parameter in more than one SSI. You review the parameter 

members to remove the conflict. 

You set up an SSI for a product family by using the Install Utility that comes with 

that family. In the following example, you have a system that is running CA 

SOLVE:Operations Automation but has no CA Mainframe Network Management 

products. You want to add CA NetMaster NM for TCP/IP to the system. 

1. Use the Install Utility that comes with CA NetMaster NM for TCP/IP to set up 

a separate SSI. 

a. Select CA NetMaster NM for TCP/IP as the product you want the SSI to 

serve. 

b. Complete the setup. 

2. Review the parameter members for the two SSIs for CA SOLVE:Operations 

Automation and CA NetMaster NM for TCP/IP. Referring to the Multiple 

Instances of SOLVE SSI on the Same System (see page 13) topic, you notice 

that both SSIs specify the restricted UNIX and XEVNT parameters. Because 

CA SOLVE:Operations Automation is using an earlier version of SSI, remove 

those parameters from the member for that SSI. 

You configure the two SSIs to run without conflict on the same system. 
 

Multiple Instances of SOLVE SSI on the Same System 

Multiple instances of the SOLVE SSI component can run on the same system. 

These instances can include SSIs at different gen levels. For example, if you run 

products from different families on the same system, you can set up a different 

SSI for each family. 

When you use the Install Utility to set up the SSIs, the default configuration 

enables the SSIs to communicate with each other (initialization parameter 

XCF=YES (see page 21)). The multiple SSIs works as a logical SSI. A product 

region connected to one SSI has access to the facilities in the other SSIs. 
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Some SSI initialization parameters can be set only once within the logical SSI; 

otherwise, failures can occur. If you plan to run multiple SSIs on the same 

system, ensure that the following parameters, if necessary, are set in one SSI 

only: 

■ IPSECNMI=YES (see page 19) 

■ PAEESTACK=stack_job_name (see page 25) 

■ PKTANALYZER=YES (see page 28) 

■ PPI=YES (see page 29) 

■ SMF=YES (see page 20) 

■ SNANMI=YES (see page 20) 

■ UNIX=YES (see page 21) 

■ XEVNT=YES (see page 21) 

The following table provides a matrix that helps you identify the important 

parameters required within a logical SSI for the products running on a system. 

Where possible, include the parameters in the SSI at the latest gen level. 

Table legend: FTM (CA NetMaster FTM), NA (CA NetMaster NA), SNA (CA 

NetMaster NM for SNA), TCP/IP (CA NetMaster NM for TCP/IP), SO (CA 

SOLVE:Operations Automation), SOCICS (CA SOLVE:Operations Automation for 

CICS), and SC (CA SOLVE:Central) 

 

 
FTM NA SNA TCP/IP SO SOCICS SC 

IPSECNMI N/A N/A N/A NO/YES N/A N/A N/A 

PAEESTACK N/A N/A N/A stack_job_name N/A N/A N/A 

PASMFWRITE YES N/A N/A YES N/A N/A N/A 

PKTANALYZER N/A N/A N/A YES N/A N/A N/A 

PPI N/A N/A N/A N/A N/A YES NO/YES 

SMF YES N/A N/A YES N/A N/A N/A 

SNANMI N/A N/A N/A YES N/A N/A N/A 

UNIX YES N/A N/A YES YES YES N/A 

XEVNT YES YES YES YES YES YES N/A 

Note: CA SOLVE:Access requires no special parameters, except the standard 

XCF=YES. 
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Note: CA NetMaster FTM uses the NMFTP Monitor SSI, which shares the 

initialization parameters with the SOLVE SSI. When you use the Install Utility to 

set up the NMFTP Monitor SSI, the correct parameters are configured. The 

NMFTP Monitor SSI has IPSMFAPIREC=YES, which is mutually exclusive with the 

UNIX parameter in the same SSI. 
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Chapter 3: Administering the SOLVE SSI 
 

This section contains the following topics: 

Initialization Parameters (see page 17) 

Execute SOLVE SSI Commands (see page 22) 

Packet Analyzer and SOLVE SSI (see page 24) 

Use PPI with SOLVE SSI (see page 28) 
 

Initialization Parameters 

SOLVE SSI has various initialization parameters. These control important 

execution options and facilities. 

The initialization parameters are specified in the SSIPARM(SSISYSIN) or 

SSIPARM(SSIPARMS) (if used) member created during region setup as described 

in Installation Guide. To review the initialization parameters and to add further 

initialization parameters, open this member. 

Note: Parameters can be specified more than once. The last specification is 

used. 

Note: Packet Analyzer and the PPI facility provide several additional parameters. 
 

ABENDCODE={ 4095 | n }  

Assigns an alternate user ABEND code for SOLVE SSI internal ABENDs. 

Default: 4095 

Limits: 1 to 4095 

ABENDMSG={ NO | YES } 

Specifies whether SSI service ESTAE exits write WTO messages if an ABEND 

is detected. You can use this parameter to find external interface errors, for 

example, PPI RC 90. 
 

ADDSSID={ YES | NO } 

Specifies whether the SSID is defined automatically if an SSID is not found 

when SOLVE SSI starts. If YES is specified, the SSID is defined automatically. 

If NO is specified, the SSID must be defined manually in the 

SYS1.PARMLIB(IEFSSNxx) member. 
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ARM={ NO | YES } 

Specifies whether the SOLVE SSI region registers with the Automatic Restart 

Manager (ARM). If NO is specified, the region does not register with ARM. If 

YES is specified, the SOLVE SSI region attempts to register with ARM. If the 

registration fails, an error message is written to the SSILOG but the region 

starts. 
 

ARMNAME=elementname 

Overrides the default ARM element name. The default is SVS_sysnamessid 

where sysname is the system name and ssid is the ID of the SOLVE SSI 

region. ARM requires a unique element name for each SYSPLEX. 
 

BLIP={ NO | n } 

Specifies the wake-up interval, which prevents S322 time-outs of the 

subsystem job. This parameter can be important in a testing environment if 

SOLVE SSI is running as a batch job. If NO is specified, no wake-up timer is 

set. 

Default: NO 

Limits: Valid values of n are 1 to 60 minutes. 
 

CDI={ YES | NO } 

Specifies whether to enable or disable the Configuration Data Interface (CDI) 

facility. The facility is an EPS server that accepts requests for and obtains 

TCP/IP stack configuration data from IBM's Communications Server. CA 

NetMaster NM for TCP/IP uses this facility. 

Default: YES 
 

DAE={ NO | YES } 

Specifies whether SOLVE SSI sets the DAE indicator to ON when requesting 

an SDUMP. This parameter enables these dumps for DAE processing. Use 

this parameter to stop duplicate Supervisor Call (SVC) dumps. 

Default: NO 

Note: Current releases of z/OS perform DAE processing regardless of the 

setting of this parameter. 
 

DDSUBSYS={ NO | YES } 

Specifies whether SOLVE SSI provides services needed by the DD SUBSYS 

facility. 

If you are using the DD SUBSYS facility, specify YES. 

Default: NO 
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ENF={ NO | YES } 

Controls the setup of the z/OS ENF listener during SSI initialization. If NO is 

specified, no listener is inserted. If YES is specified, then an ENF listener is 

inserted and the ENF interface is activated. 

Default: NO 
 

ENFADD=n 

Activates the nominated ENF code. If n does not correspond to a recognized 

ENF code that SOLVE SSI handles, then a warning message is produced 

during startup. This parameter can be repeated, as necessary. 

The valid ENF codes and their initial status are documented in IBM's z/OS 

Authorized Assembler Programming Guide. 

Limits: n must be in the range 1 through 255. 
 

ENFDEL=n 

Deactivates the nominated ENF code. If n does not correspond to a 

recognized ENF code that SOLVE SSI handles, then a warning message is 

produced during startup. This parameter can be repeated, as necessary. 

Limits: n must be in the range 1 through 255. 
 

ENFARMWTO={ NO | YES } 

Activates the old WTO messages that earlier versions of the ENF interface 

issued for ARM events.  

Default: NO 
 

IPSECNMI={ NO | YES } 

Specifies whether to enable the IPSec network management interface (NMI) 

facility. If multiple SOLVE SSIs are active on a system, only one of these SSIs 

can have the facility enabled. 

Default: NO 

IPSMFAPIREC={ NO | YES } 

Specifies whether to exploit the SMF API (or Network Management Interface 

API). 

Notes:  

■ This parameter and the UNIX parameter are mutually exclusive. You can 

set only one to YES in any SSI. 

■ For CA NetMaster FTM, this parameter is set to YES in the NMFTP Monitor 

parameter member during setup if you use an IBM TCP/IP stack. 
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PROMPT={ YES | NO } 

Specifies whether a message is written (WTO) to the system operator if the 

supplied SSID is not found or is unusable. If YES is specified, the operator 

has a chance to specify a new SSID, request a retry, or end the SSI. If NO is 

specified, and the SSID is not usable, the SSI is immediately terminated. 
 

SDUMP={ NO | YES } 

Specifies whether SOLVE SSI writes a dump to a SYS1.DUMP data set when 

an ABEND occurs. 

The default is NO, and the dump is written in accordance with the JCL (for 

example, SYSUDUMP or SYSMDUMP). 

Specifying YES suppresses any dump specifications (such as SYSUDUMP) in 

the JCL (except as noted), and forces a dump to a SYS1.DUMP data set. The 

dump includes symptom strings that aid analysis. 

Note: The formatted dump (SSIDUMP) is still written. In some cases, a 

system dump (for example, a CANCEL DUMP operator command) is written 

to a JCL-specified location (such as SYSUDUMP) before SOLVE SSI has a 

chance to suppress it. Therefore, it is recommended that the SYSUDUMP, 

SYSMDUMP, and SYSABEND statements be removed from the SOLVESSI 

JCL. 

SMF={ NO | YES } 

Specifies whether support for SMF record intercept is enabled. You can 

enable this support in only one SSI per system. 

Note: Set this parameter to YES for the following products only: 

■ CA NetMaster NM for TCP/IP 

■ CA NetMaster FTM 

Important! SMF record type 119 must be defined in the stack configuration. 

For more information, see CA NetMaster Network Management for TCP/IP 

Installation Guide. 

SMFREPLACE={ NO | YES } 

Specifies whether SMF exits are reloaded when SMF=YES. By default (NO), 

the SSI reloads an exit only if it is newer than the currently loaded one. If you 

specify YES, the SSI reloads the exits every time the SSI starts up. 

Important! The SSI loads the exits into common storage. Specifying YES 

can lead to a depletion of the common storage under abnormal 

circumstances. Therefore, in a production environment, do not specify YES 

unless there are other considerations (for example, intermittent execution of 

a back-level SSI). 
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SNANMI={ YES | NO } 

Enables and disables the SNA network monitoring. The SNANMI facility can 

be enabled in only one active SOLVE SSI region. 

Default: NO 

SOLVEJOB={ * | jobname }  

Specifies the job names of the regions that can connect to SOLVE SSI. If * is 

specified, no restriction is placed on the regions that can connect to SOLVE 

SSI. jobname specifies the name of a region running under that job name 

that can connect to SOLVE SSI (it must be a valid z/OS job name). This 

parameter can be specified up to 16 times to nominate the regions that can 

connect to SOLVE SSI at once. 
 

SSID={ * | name } 

Specifies the subsystem ID (SSID) that this invocation of the SSI is to use. 

Note: You do not need to define the SSID explicitly. The SSID can be defined 

automatically.  

Limits: If an asterisk (*) is specified (the default), the first four characters of 

the SSI job name are used. If name is used, it must be a valid one- to 

four-character name. The first character must be alphabetic or national and 

the remainder alphanumeric or national. 

STATS={ NO | n } 

Specifies the interval at which a SHOW SSISTATS command is issued. The 

output of this command is routed to the SOLVE SSI log only. This can be 

useful for following trends in SOLVE SSI usage. If NO is specified, no STATS 

timer is set. 

Limits: n can be 1 to 60 minutes. 
 

UNIX={ NO | YES } 

Specifies whether to enable the UNIX System Services (USS) shell interface. 

If you set this parameter to YES, and your operating system cannot access 

USS for some reason, then you receive a warning message, but the task 

starts successfully. 

If you have multiple SOLVE SSIs active on a system, then set up the USS 

shell interface in one SOLVE SSI only. For the other SOLVE SSIs, specify NO. 
 

XCF={ NO | YES } 

Enables the SOLVE SSI region to communicate with other SSI regions by 

using XCF. If YES is specified, the SOLVE SSI region attempts to register with 

XCF using the group name and member name. 
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XCFGROUP=groupname 

Overrides the default XCF group name that SOLVE SSI uses when registering 

with XCF.  

Default: ZSOLVE01 
 

XCFMEMBER=membername 

Overrides the default XCF member name that SOLVE SSI uses when 

registering with XCF.  

Default: sysnamessid 

XEVNT={ NO | YES } 

Specifies whether to include Simple One Shot Event Sender support. Only 

one SSI started task per z/OS system can have YES specified. 

XMS={ * | NO | YES } 

Specifies whether SOLVE SSI sets up and uses a cross-memory environment 

for external interfaces (for example, PPI). The following values can be 

specified: 

* 

Uses XMS if supported by the operating system. This means that z/OS 

uses XMS by default. 

NO 

Prevents use of cross-memory services. Several SSI facilities will not 

work. 

YES 

Uses XMS, but an error occurs if the environment does not support XMS. 

Default: * 
 

Execute SOLVE SSI Commands 

SOLVE SSI provides several commands that can be used for control and to 

display statistics. These commands can be issued from the following locations: 

■ From any system console. Command responses are delivered to the issuing 

console. 

■ Any suitably authorized user ID on the connected region. Command 

responses are delivered to the issuer. 

■ Internally. The STATS=n parameter internally issues a command in the SSI 

itself. The output of this command is routed to the SSI log only. 
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SSI Command Descriptions 

The following commands are provided: 

SHOW SSIEPS 

Displays information about EPS connections and end points as seen from this 

SSI region. The following operands are supported:  

DETAIL 

Displays additional information about each end point. 

LINKS 

Displays a list of direct links to other end points. 

TOPOLOGY 

Displays a topology of all links between all end points. 

NOTIFY 

Displays a list of notifier end points for each link in the topology display. 

STATS 

Displays additional statistics lines. 

SHOW SSISTATS 

Displays statistics about internal SSI pools. This command is useful for 

tuning and debugging.  

SHOW SSIUSERS 

Displays a list of all signed-on SSI environments. The list shows the terminal 

(or console), user ID, and type.  

SSI SIGNOFF 

Terminates the current command/message environment. This is useful for 

preventing further receipt of unsolicited SSI messages after issuing some 

SSI commands.  

SSI STATUS 

Displays the status of the SSI. The display includes the version number and 

PUT level.  

SSI STOP 

Stops the SSI. This command causes the job to terminate. This command 

cannot be issued during initialization. A default command authority of 4 is 

assigned to this command. 

Note: These are basic SOLVE SSI commands only. PPI (see page 31) and SMF 

(see page 24) support add some additional commands. 
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SMF Command Descriptions 

The following SMF-related commands let you control and inquire about the SMF 

processing performed by your product. The commands are available only for the 

copy of the SOLVE SSI that has been started using the SMF=YES parameter, 

which activates SMF support. 

SMF STATUS 

Displays current status of SMF processing, status of each SMF exit, and 

common code component. 

SMF DEREGISTER 

Deregisters SMF exits, functionally deactivating SMF processing by your 

product 

SMF REGISTER 

Registers SMF exits and reactivates SMF processing by your product. 

Note: Deregistering and then registering the SMF exits refreshes the exit code. 
 

Packet Analyzer and SOLVE SSI 

Note: This section only applies to CA NetMaster NM for TCP/IP and CA NetMaster 

FTM. 

Packet Analyzer intercepts packets inbound and outbound for your stacks, and 

stores the connection information and general statistics (for example, byte and 

packet counts) in the SOLVE SSI. It also intercepts SMF records generated by 

stacks, and File Transfer Protocol (FTP) and Telnet servers to augment the 

connection information. It depends on having a SOLVE SSI task running. 
 

Packet Analyzer Parameter Descriptions 

Before you activate Packet Analyzer, you can specify its parameters in the 

SSIPARM(SSISYSIN) or SSIPARM(SSIPARMS) (if used) member created during 

setup. 
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PACCMINT={ time_interval | NO } 

Specifies whether you want to monitor changes in the configuration of the 

stacks and the time interval used to scan for any changes. 

time_interval 

Specifies the scan interval (in seconds) to use to monitor changes in 

stack configuration. 

Default: 30 

Limits: 5 to 600 

NO 

Specifies that changes in stack configuration are not monitored. 

PADSWTPCT={ dynamic_database_threshold | NO } 

Specifies a percentage threshold to trigger messages to warn users of the 

dynamic database becoming full. NO disables the warnings. 

Default: 80 

Limits: 50 to 95 or NO 

PAEESTACK={ stack_job_name | NONE } 

Specifies the job name of the stack that VTAM uses for EE traffic. Setting the 

value to NONE disables EE packet processing. 

Default: None 

PAEXMODE={ TASK | ZIIP | BEST } 

Specifies whether to move processing performed by the Packet Analyzer 

from the central processor (CP) to a z/Series Integrated Information 

Processor (zIIP): 

■ TASK executes the Packet Analyzer in Task mode on the CP. 

■ ZIIP executes the Packet Analyzer in SRB mode and makes the workload 

eligible for dispatching on a zIIP, where available. 

■ BEST executes the Packet Analyzer in SRB mode and makes the 

workload eligible for dispatching on a zIIP, where available (that is, as if 

PAEXMODE=ZIIP is specified). If no zIIP is available, BEST uses Task 

mode (that is, as if PAEXMODE=TASK is specified). Unlike 

PAEXMODE=ZIIP, no error occurs if no zIIPs are available. 

Default: TASK 
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PALEVEL={ FULL | NOSTATS | NOPACKETS | NONE } 

Specifies the processing level of Packet Analyzer: 

■ FULL enables all Packet Analyzer functions. 

■ NOSTATS enables packet processing and tracing, but keeps no statistics. 

■ NOPACKETS disables packet processing and tracing. 

■ NONE disables Packet Analyzer (same as PKTANALYZER=NO). 

Default: FULL 
 

PAMAXULPORT=high_port_number 

Specifies the highest local User Datagram Protocol (UDP) port number for 

which packet statistics are kept. Increasing it can cause the Packet Analyzer 

database to increase in size. 

Default: 1024 

Limits: 512 to 65535 
 

PAMITTSIZE=packet_trace_size 

Limits the number of packets you can specify for the size of the initial packet 

trace table in a multiple Transmission Control Protocol (TCP) connection 

trace definition. 

Default: 100 

Limits: 10 to 999 
 

PAMMTTSIZE=main_trace_size 

Limits the number of packets you can specify for the size of the main trace 

table in a trace definition. 

Defaults: 20000 

Limits: 10 to 99999 
 

PAMFZKPTIME=ended_trace_retain_time 

Limits the number of minutes you can specify in a trace definition to retain an 

ended trace. 

Default: 1440 (one day) 

Limits: 1 to 10080 (seven days) 
 

PAMSSKPTIME=snapshot_trace_retain_time 

Specifies the number of minutes to retain the snapshot of a running trace. 

Default: 1440 (one day) 

Limits: 1 to 10080 (seven days) 
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PAMTCCCRLIM=number_tcp_traces 

Limits the number of TCP conversation traces (per stack) you can specify for 

a trace definition. 0 specifies no limit. 

Default: 999 

Limits: 0 to 9999 
 

PASMFWRITE={ YES | NO } 

Specifies whether SMF records can be requested to be written by SMF exits 

when SMF=YES. 

Note: The TCP/IP application name definitions can override this value, 

subject to the actions of other SMF exits of the same type that are executed 

later. 
 

PASSWTPCT={ synchronous_database_threshold | NO } 

Specifies a percentage threshold to trigger messages to warn users of the 

synchronous database becoming full. 

Default: 80 

Limits: 50 to 95 or NO 
 

PATSWTPCT={ trace_database_threshold | NO } 

Specifies a percentage threshold to trigger messages to warn users of the 

trace database becoming full. 

Default: 80 

Limits: 50 to 95 or NO 
 

PDCPDSSIZE={ n | 1024 } 

Specifies the size of the Packet Analyzer decoupler in MB.  

Default: 1024 

Limits: n must be in the range 8 through 1024.  
 

PDCPSGSIZE={ n | 256 } 

Specifies the size of the Packet Analyzer decoupler segments in KB.  

Default: 256 

Limits: n must be in the range 68 through 1024.  
 

PDYNDBSIZE={ n | 64 } 

Specifies the size of the Packet Analyzer dynamic database in MB.  

Default: 64 

Limits: n must be in the range 8 through 1024. 
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PKTANALYZER={ NO | YES } 

Specifies whether Packet Analyzer is enabled. You can enable Packet 

Analyzer in only one SSI per system. 

Note: Set this parameter to YES for the following products only: 

■ CA NetMaster NM for TCP/IP 

■ CA NetMaster FTM 
 

PSYNDBSIZE={ n | 12 } 

Specifies the size of the Packet Analyzer synchronous database in MB.  

Limits: n must be in the range 4 through 256.  

Default: 12 
 

PTRCDBSIZE={ n | 64 } 

Specifies the size of the Packet Analyzer trace database in MB.  

Default: 64 

Limits: n must be in the range 8 through 1024. 
 

STACK REFRESH Command—Refresh Stack Interface Configuration 

The STACK REFRESH command refreshes the stack interface configuration for 

any changes (for example, when an interface is added or removed). 
 

Use PPI with SOLVE SSI 

PPI provides a general-purpose facility for programs, written in any language, to 

exchange data. It also provides a facility for any program to forward a generic 

alert to NetView or a region. The SOLVE SSI implementation closely follows the 

IBM implementation. Therefore, programs written to run with the IBM 

implementation work with the SOLVE SSI implementation with no changes. No 

special authorization is required to use the PPI and it does not depend on having 

NetView or a SOLVE SSI running. 
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Implement PPI 

PPI is implemented by SOLVE SSI, allowing it to run regardless of the status of 

the region. This is important because applications may need to queue data across 

the PPI even if the region itself is not active. 

The region can use PPI regardless of whether it is being provided by SOLVE SSI 

or NetView. The region need not have a connected SOLVE SSI and the connected 

SOLVE SSI need not be the PPI owner to use the facilities of PPI. 

Note: Only the region connected to the PPI-owning SOLVE SSI can register 

receiver IDs that start with NETV or NETM. 

When the region is initialized, it issues a conditional load for CNMNETV. If 

CNMNETV is found, then PPI facilities are available. 
 

PPI Parameter Descriptions 

Before you activate PPI, you specify its parameters in the SSISYSIN or 

SSIPARMS (if used) member. The following parameters are recognized: 

PPI={ YES | NO } 

Indicates whether this SOLVE SSI is to provide PPI services (YES) or not 

(NO). 

Note: Only one SSI can provide the interface. 

Default: No 

PPIFREELIM={ 25 | nnnn } 

Specifies the maximum number of pages (each 4 KB) of storage that are 

retained in the PPI data buffer free storage pool. Buffers longer than 

approximately 4,060 bytes are not allocated out of this pool. 

The buffer-free storage pool is initially empty. Storage is obtained from the 

system as required, and, as data buffers are received, their storage is 

returned to the pool. If the number of free pages in the pool then exceeds 

this limit, the excess pages are freed to the system. The pool reduces 

overheads by eliminating most GETMAIN/FREEMAIN activity. 

Limits: 10 to 1,000 pages  

Default: 25 pages (100 KB) 
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PPIINATO={ n | NO | 5 } 

Specifies the number of minutes that must elapse before a SHOW PPIUSERS 

command without the INACT operand hides inactive PPI users with nothing 

queued to them.  

Limits: 0 to 1,440, or NO. Zero or NO indicates no time-out  

Default: 5 
 

PPIMAXQB={ 100000 | nnnnn } 

Specifies the largest value allowed for the PPI receiver queue limit. Larger 

values are rejected. 

Limits: 1000 to 1,000,000. The lowest limit that a PPI receiver can have is 0. 

PPIMAXBL={ 65536 | nnnnn } 

Specifies the largest data buffer size that can be queued to a PPI receiver. 

This parameter allows the setting of a reasonable limit.  

Limits: 1,000 to 1,000,000 
 

PPINETMR={ YES | NO }  

PPINETVR={ YES | NO } 

Specifies whether only the connected main task can define PPI receiver 

names starting with NETM or NETV.  

Default: YES, meaning that the associated name is restricted. 

PPINPREF={ * | xxxx } 

Specifies the PPI name service prefix value. An asterisk (*) uses the SOLVE 

SSI SSID; otherwise, this value must be a one- to four-character name 

consisting of alpha, numeric, or national characters only. We recommend a 

value the same as the SOLVE SSI-connected domain ID as specified in the 

NMDID JCL parameter. 

PPIRC90T={ YES | NO } 

Controls the writing (WTO) of additional debugging messages from PPI 

whenever a PPI return code 90 is returned on a PPI application program 

interface (API) call. 

PPIREUSE=n 

Specifies the number of PPIINATO intervals that must elapse before an 

inactive PPI receiver with nothing queued, that was a PPI-supplied name 

(function 60), is purged. The name becomes available for reassignment. 
 



Use PPI with SOLVE SSI 

 

Chapter 3: Administering the SOLVE SSI  31  

 

Activate PPI 

PPI is activated using the JCL parameter PPI=YES | NO, which is specified in the 

SSISYSIN or SSIPARMS (if used) member. If PPI is set to YES, then SSI attempts 

to activate PPI when SOLVE SSI initializes. 

If PPI is not activated, then check the following: 

■ Whether another SOLVE SSI owns the PPI. Only one SOLVE SSI can provide 

PPI services at a time. 

■ That SOLVE SSI can build the required control block structure to support PPI. 
 

PPI Command Descriptions 

The following commands are available or have extended function when PPI is 

active: 

SHOW PPIUSERS [ =name | =prefix* ]  [ INACT ] 

Displays a list, in receiver ID order, of all defined PPI receivers. The display 

includes statistics on buffer counts and storage. If active, the owning job 

name and ASID are displayed. 

SHOW SSISTATS 

If PPI is active, additional statistics on PPI are displayed. This includes the 

number of receivers and statistics on the PPI buffer storage pool. 
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Chapter 4: SSI DD SUBSYS Support 
 

This section contains the following topics: 

DD SUBSYS (see page 33) 

SOLVE SSI DD SUBSYS Support (see page 34) 

Enable DD SUBSYS Support in SOLVE SSI (see page 34) 

Use DD SUBSYS (see page 35) 

WTO Facility (see page 42) 

PPISEND Facility (see page 44) 

PPIRECV Facility (see page 46) 

USER, USERI, and USERO Facilities (see page 48) 

FILTER Exit API (see page 50) 

USERx Facility API (see page 56) 

Sample FILTER Exit: UTIL0037 (see page 65) 

Sample USER Exit: UTIL0038 (see page 69) 
 

DD SUBSYS 

Note: Support for DD SUBSYS is available on MSP and z/OS systems only. 

DD SUBSYS is a facility (provided by the system) that allows an authorized 

subsystem to provide access methods to existing programs. In effect, the 

subsystem appears to these programs as if it is a set of files, and in this way is 

able to provide data to, or receive data from, the programs. 

For example, assume that you have a third-party program that writes an event 

log while it is running. The information in this event log could be very useful for 

system automation. Normally, however, the data written to this log cannot be 

accessed by another program until the program producing the log is shut down. 

DD SUBSYS allows you to intercept all data written to the file while logging is 

taking place. You can then use the WTO facility to send the data to operator 

terminals. The Advanced Operations Management (AOM) software then forwards 

the data to any specified NCL process in the region. 
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SOLVE SSI DD SUBSYS Support 

The SOLVE SSI support for DD SUBSYS provides the following facilities: 

■ The ability to generate WTO output records. 

■ The ability to send output records to a nominated PPI receiver. 

■ The ability to act as a PPI receiver and to pass incoming records to a program 

as an input file. 

■ The ability to provide a general user function where a user-nominated 

program can be called to process I/O. 

In addition, all the supplied facilities support the following functions: 

■ The ability to copy the data records to another data definition. 

■ The ability to call a user-written filter program that can determine whether 

individual records are to be accepted or rejected. 
 

Enable DD SUBSYS Support in SOLVE SSI 

To use the DD SUBSYS support provided by SOLVE SSI, you must enable it. 

To enable the use of DD SUBSYS with SOLVE SSI, use the following startup 

parameter: 

DDSUBSYS={ NO | YES } 

The following example enables SSI for DD SUBSYS: 

//DDSUBSYS EXEC PGM=NMSSI,TIME=1440, 

//         PARM=('SSID=xxxx,DDSUBSYS=YES') 

//SSILOG   DD SYSOUT=* 

//SSIDUMP  DD SYSOUT=* 

//SYSUCUMP DD SYSOUT=* 

The SSID used for this SSI should have been specified in the IEFSSNxx or 

SUBSYSxx member in SYS1.PARMLIB during the installation and setup of SOLVE 

SSI. 

You can start an SSI as a started task or as a job. 
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Considerations When Stopping the SSI 

You can stop the SSI by using the following system operator command: 

F job-name,SSI STOP 

However, you should not stop or restart the SSI while using it to find DD 

SUBSYS—JCL errors, because allocation errors can occur.  

Also, open errors can occur if you stop the SSI after a job has started but before 

it opens a DD SUBSYS data set. These errors cause OPEN ABENDs (013-C0) that 

can crash the user program. 

Finally, if you stop the SSI while a DD SUBSYS data set is open, the next I/O 

request to that data set ABENDs with a U0001 ABEND code. This is preceded by 

the following message, which is sent as a WTO message to the system console: 

NS4199 ACCESS ERROR on ddname 

Restarting the SSI does not prevent ABENDs or errors from occurring in jobs that 

are active but dormant. Jobs that require the SSI that has been stopped (and 

restarted) for DD SUBSYS do not automatically use the restarted SSI. 

Subsequent SSI requests from those jobs can fail because the original SSI has 

stopped. Restart those jobs to use the new SSI. 

Most of these restrictions are due to operating system limitations. 
 

Use DD SUBSYS 

This section describes how to use DD SUBSYS in general terms. You may also 

want to refer to the MVS JCL Reference manual for further JCL considerations, 

and the MVS Programming: Authorized Assembler Services Guide for details of 

the Dynamic Allocation interfaces. 
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Implementation of DD SUBSYS 

While implementing the DD SUBSYS facility, you should consider the following: 

■ An extra operand on the JCL DD statement lets you nominate the name of a 

subsystem that is to process the I/O requests of this file. 

This is the SUBSYS operand and is used as follows: 

//ddname DD SUBSYS=(parm1,parm2...parmn) 

This operand tells the operating system that the nominated subsystem is to 

process this file. 

Note: If individual parameters of the SUBSYS operand contain special 

characters, including equals signs (=), then the subparameter must be 

enclosed in quotes. The quotes are removed before the parameter is passed 

to the subsystem. 

■ Equivalent facilities to the DD SUBSYS operand are available when using 

dynamic allocation. Two text units can be used, as follows: 

DALSSNM  X'005F' 

Specifies the subsystem name (corresponding to the first subparameter of 

the SUBSYS operand in JCL). 

DALSSPRM  X'0060' 

Specifies subsystem parameters (corresponding to the additional 

subparameters of the SUBSYS operand in JCL). 

Note: Since each subparameter passed in the text unit has a length, the 

previous comments regarding quotes in the JCL parameter do not apply. 

■ The SSI provides several function codes that must be supported by a 

subsystem to allow it to use DD SUBSYS. 

These function codes and their purpose are shown in the following table: 

 

Function 

Code 

Purpose 

07 Unallocation (UN)—called at job step end or by dynamic 

deallocation of the file. 

16 Open (OP)—called when the file is opened. 

17 Close (CL)—called when the file is closed. 

38 Converter/interpreter (CI) called when JCL is parsed (not 

used for dynamic allocation). 

39 Allocation group (AG)—called at job step allocation or 

dynamic allocation time. 
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■ The subsystem must also provide a set of routines that receive control 

whenever a program that has opened a DD SUBSYS file issues an I/O request 

to it. These routines get control as a logical subroutine called by the user 

program and must simulate the processing of normal I/O requests. How 

these routines provide data to the user program (for input) or data from the 

user program (for output) is up to you. 

■ DD SUBSYS interface routines in your operating system translates all 

DCB-based I/O requests to an ACB/RPL-based interface for the subsystem. 

This is the normal mode of operation. If the subsystem is coded with 

appropriate logic, it can handle an application program that opens an ACB to 

DD SUBSYS. In this case the subsystem could simulate VSAM. 
 

Who Can Use DD SUBSYS Facilities? 

Any job in the same operating system as the providing subsystem can use the DD 

SUBSYS facilities. There is no requirement for the user of DD SUBSYS facilities to 

be in the same region as the subsystem itself. Of course, a specific 

implementation of DD SUBSYS may impose restrictions. The SOLVE SSI 

implementation does not impose any restrictions. 

An implementation of DD SUBSYS may not support some types of file or I/O. For 

example, the SOLVE SSI implementation discussed here provides two functions 

(WTO and PPISEND) that are applicable to output files only. If you attempt to 

open these files for input the operation fails. 

Similarly, some subsystems may not be able to simulate enough VSAM 

information for a program to open an ACB directly to the subsystem. 

To use DD SUBSYS, the providing subsystem must be active; otherwise, you get 

JCL errors or ALLOCATION and OPEN statements fail. 
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DD SUBSYS Syntax 

All supplied functions of the SOLVE SSI DD SUBSYS facility use the following 

syntax: 

//ddname  DD SUBSYS=(ssid,function[,'keyword=value',...]) 

ssid 

Specifies the SOLVE SSI SSID. 

function 

A supported function name. This must be the second subparameter. 

keyword=value 

Specifies one or more functions or general parameters. Each parameter is a 

keyword-value pair. Due to JCL requirements, you must use quote marks, 

because there are special characters to specify, such as the equals sign (=). 

The parameter names depend on the specific function. 

When using dynamic allocation, the subparameters are provided as 

individual length/value pairs on the DALSSPRM text unit. In this case, there 

is no need to quote the parameter values. 
 

Supported Function Names 

The following function names are supported: 

WTO 

Invokes the WTO facility that allows output records to be sent to the system 

console through the WTO macro. 

PPISEND 

Invokes the PPI SEND function that sends output records through PPI to any 

PPI receiver. 

PPIRECV 

Invokes the PPI RECEIVE function that allows records sent to the nominated 

PPI receiver name to be fed to a program as input. 

USER or USERI or USERO 

Invokes the USER facilities that allow a user-specified program to be driven 

to process input or output records. 
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Common Functions 

There are two additional facilities available when using SOLVE SSI DD SUBSYS 

functions. These facilities enable the copying of data to another file and the 

filtering of data through a user exit program. 
 

COPY Facility 

The COPY facility lets you copy the DD SUBSYS file records (input or output) to 

another file. 

This lets you see and process a data flow while using DD SUBSYS and sending the 

data to its original destination, for example: 

//LOG  DD  SUBSYS=(NMSS,WTO,'COPY=LOG2') 

//LOG2 DD  SYSOUT=A 

‘COPY=ddname’ 

ddname 

Specifies the target data definition name. There are special DCB attribute 

defaulting rules. You can override these by using a DCB parameter on the 

target COPY ddname. 
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The rules are as follows: 

■ If the DCB has no RECFM specified, then the attributes are forced to 

RECFM=U, LRECL=0, and BLKSIZE=6233; however: 

– If RECFM is U and BLKSIZE is specified, then the specified BLKSIZE is 

used. 

– If RECFM is U and no BLKSIZE is specified, then BLKSIZE=6233 is set. 

■ If LRECL=0, and: 

– If the RECFM is FB, then LRECL=132 is set, or LRECL=133 if the RECFM 

has A or M. If B (Blocked), LRECL*40 is set as the BLKSIZE, otherwise 

the BLKSIZE is set to the LRECL. 

– If the RECFM is VB, then LRECL=136 is set, or LRECL=137 if the RECFM 

has A or M. If B (Blocked), 6233 is set as the BLKSIZE, else the BLKSIZE 

is set to the LRECL+4. 

■ If BLKSIZE=0, and: 

– If the RECFM is U, BLKSIZE=6233 is set. 

– If the RECFM is F, BLKSIZE=LRECL is set. 

– If the RECFM is FB, a BLKSIZE that is the largest integral multiple of the 

LRECL less than 6233 is set. Otherwise, the value of the LRECL is used, if 

it is greater than 6233. 

– If the RECFM is V, BLKSIZE=LRECL+4 is set. 

– If the RECFM is VB, BLKSIZE=6233 is set (if LRECL is less than 3110), 

otherwise BLKSIZE=LRECL+4 is set. 

You can cascade DD SUBSYS statements; the DD statement for the ddname 

specified for one COPY operand can itself be a DD SUBSYS definition. This can 

allow several facilities to see output from a program. 

Note: The order in which the FILTER and COPY statements are used on a single 

DD SUBSYS statement is important. If the FILTER operand precedes the COPY 

operand, then the COPY facility copies only records that were not rejected by the 

filter exit.  If the FILTER operand follows the COPY operand, all records are 

copied, regardless of the result of the filtering process. 

If the COPY file has an I/O error or an ABEND, the application program abends. 
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FILTER Facility 

The FILTER facility calls a user exit program to determine whether each 

individual record is to be passed on for processing. 

If processing an output file, for example, for PPISEND, you can use the FILTER 

facility to prevent a record from being sent. 

If processing an input file, you can use the FILTER facility to prevent a record 

from being passed to the user program. 

Additionally, if the COPY facility is also being used on the same DD statement, 

filtering may affect the copy facility. 

The syntax of the FILTER operand on DD SUBSYS is: 

‘FILTER=pgmname’ 

‘FILTER=(pgmname)’ 

‘FILTER=(pgmname,)’ 

‘FILTER=(pgmname,parm)’ 

Note: Due to JCL requirements, you must use quote marks when specifying the 

FILTER operand, because it contains special characters. (Quoting is not 

necessary, however, if you are using dynamic allocation.) 

FILTER  

Can intermingle with other DD SUBSYS subparameters, although there is an 

interaction between it and the COPY parameter. 

pgmname  

Specifies the name of a user exit program. This program is loaded during 

OPEN processing for the file. It is then called to open the file, once for each 

GET or PUT of a logical record, and to close the file. 

parm  

(Optional) If specified, it must be a one-character to eight-character value, in 

PDSNAME format. It is passed to the user filter exit. The exit can use it as, for 

example, a data definition name (ddname) of a control file. 

Note: If using both the FILTER and COPY facilities on a single DD SUBSYS 

statement, the order is important. If the FILTER operand precedes the COPY 

operand, the COPY facility copies only records that were not rejected by the filter 

exit. If the FILTER operand follows the COPY operand, all records are copied 

regardless of the result of the filtering process. 

If the FILTER program abends while processing a FILTER request, the application 

program also abends. 
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Carriage Control 

When an output data set has carriage control specified (that is, the RECFM has A 

or M in it), the following special considerations apply: 

■ The ACB/RPL interface does not normally provide the control character as 

part of the record. Rather, the control character is pointed to separately. 

Because of this, SOLVE SSI DD SUBSYS support normalizes the record. 

■ When using facilities such as PPISEND or WTO, you probably do not want to 

send the control character. These facilities default to not sending it, but this 

can be overridden. 

■ The COPY facility always copies the entire record, including the control 

character. 

■ The FILTER facility user exit is passed the entire record, including the control 

character, and is notified of its existence so that it can take appropriate 

processing steps. 
 

WTO Facility 

The WTO facility provided by SOLVE SSI lets you send records that are written to 

a file as WTO messages. This allows the messages to be viewed by an operator, 

and picked up by an automation product. 

Note: Use the WTO facility sparingly; otherwise, you can fill up console buffers 

and crash the system. 

A logical record can have an optional prefix added to the front, then the total 

record is truncated to 126 characters before being sent as a WTO message. 
 

WTO DD SUBSYS Operands 

The following are the DD SUBSYS operands for the WTO function: 

Note: Other than for the WTO name itself, the order of the operands is not 

important. 

WTO 

Specifies the WTO function and must be the first subparameter after the 

subsystem name. 
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'ROUTCDE=(list)' 

Specifies an optional list of routing codes to apply to the WTO messages. If 

this operand is omitted, ROUTCDE=11 is assumed. Quote marks are 

required.  

Limits: The list of routing codes can be a single number (in which case, no 

parentheses are necessary) or a list of numbers from 1 through 16 (MSP) or 

1 through 128 (z/OS). 

Note: If using routing codes greater than 20, authorization is required. 

Unauthorized programs cannot issue WTO messages using these routing 

codes and, if they do, an ABEND D23 results. 

'DESC=(list)' 

Specifies an optional list of descriptor codes to apply to the WTO messages. 

If this operand is omitted, DESC=7 is assumed. Syntax is as for ROUTCDE, 

values range from 1 through 16. 

Note: It is not advisable to use descriptor codes 1, 2, or 11, as these 

messages will stay on the consoles. 

'PREFIX=value' 

Allows for the specification of an optional WTO prefix. If this operand is 

omitted, the SSID is used (but you can force the prefix to be dropped by 

coding PREFIX=NO). Otherwise, you can specify a 1-character to 

12-character prefix value. There must be a single blank between the prefix 

and the text of the message. 

'BASE=n' 

Controls the starting column number for the data that is sent as a WTO 

message. The value of n must be a number from 1 through 32760. It is a 

logical column number. The default value is 1 if the file does not have 

carriage control; otherwise, it defaults to 2. This means that a print file will 

not normally have carriage control characters in the WTO text. BASE can also 

be used to skip a record prefix, and so on. 

'COPY=ddname' 

'FILTER=parms' 

Allow for copying and filtering of data.  

Notes: 

You need to consider the following: 

■ A null record after BASE considerations is ignored. 

■ Routing codes above 16 are not supported unless the operating system is 

z/OS. 

■ The FILTER facility is especially useful here to limit the amount of data sent to 

the consoles. 
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PPISEND Facility 

The PPISEND facility provided by SOLVE SSI lets you send logical records written 

to a file to any PPI receiver. The receiver can be, for example, an NCL process in 

a region. It can also be any user program that uses the PPI API. 
 

PPISEND DD SUBSYS Operands 

The following are the DD SUBSYS operands for the PPISEND function: 

Note: Other than for the PPISEND name itself, the order of the operands is not 

important: 

PPISEND 

Specifies the PPISEND function and must be the first subparameter after the 

subsystem name.  

'TARGET=targetid' 

Nominates the identifier of the PPI receiver. targetid must be a valid PPI 

receiver name. The name must be defined to PPI at the time the data set is 

opened (although the PPI need not be active). This operand is required. 
 

'SOURCE=sourceid' 

Provides an optional PPI sender ID. This must be a valid PPI name, but is not 

registered to PPI. As well as a valid name, the following special names are 

supported:  

*JOB 

Use the job name. 

*STEP 

Use the job step name. If the job step name does not exist, use the job 

name. 

*PSTEP 

Use the procedure step name. If the procedure step name does not exist, 

use the step name. If the step name does not exist, use the job name. 

Default: *JOB 
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'QFULL=option' 

Controls the action to take if the PPISEND receives a PPI queue full condition 

(PPI return code 35). The following actions can be specified:  

ERROR 

Specifies that a Dataset Full condition be reflected to the application 

program with an RPL error of 28 (X'1C'). If the application is using a DCB 

(as is normally the case), then this is reflected as an I/O error (not an 

X37 ABEND). 

IGNORE 

Specifies that the queue full return code be ignored. This means that the 

record is not sent; however, processing continues. Note that, if you are 

using the COPY facility, the COPY is still performed. 

Default: ERROR 

'BASE=n' 

Controls the starting column number for the data that is sent to PPI. n must 

be a number from 1 through 32760. It is a logical column number.  

Default: 1, if the file does not have carriage control; otherwise, it defaults to 

2. This means that a print file will not normally have carriage control 

characters sent across PPI. BASE can also be used to skip a record prefix, and 

so on.  

'COPY=ddname' 

'FILTER=parms' 

Allow for copying and filtering of data. 
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Notes: 

You need to consider the following: 

■ The targetid and sourceid values are validated at JCL syntax check time. If 

they are invalid then a JCL error occurs. This syntax check is repeated at step 

allocation time. 

■ When the data set is opened, PPI is called to check that the receiver exists. If 

PPI is inactive, or if the receiver is not defined, then the open fails. This leads 

to an 013-C0 OPEN ABEND occurring for a DCB. For an ACB, an ACB open 

error code is set. Messages are written informing of the problem. Any other 

unexpected PPI return codes also cause an open error. 

■ The data set must be open for output, otherwise the open fails. 

■ When records are written to the data set, a PPI SEND is issued for each 

logical record. Any return code other than 0 (All OK), or 4 (Inactive But 

Queued) results in an I/O error. The return code of 35 (Receiver Queue Full) 

is translated into an RPL error code of 28 (X‘1C’)—data set Full, for 

ACB/RPL-based callers (if QFULL=ERROR is in effect; otherwise, it is 

ignored). 

■ The PPI receiver receives the logical records (with no prefix, even if the user 

program is writing V or VB), exactly as sent, or as adjusted by the BASE 

value. The receiver can use the sender ID to determine where the records 

came from. 

■ No null record (not even one that is logically null after considering the BASE 

value) is sent. 
 

PPIRECV Facility 

The PPIRECV facility provided by SOLVE SSI lets you receive data from other PPI 

senders and to provide the received data as an input file. The senders can be any 

other PPI users, including NCL processes in a region. They can also be any 

program that uses the PPI API. 
 

PPIRECV DD SUBSYS Operands 

The following DD SUBSYS operands are required or optional with the PPIRECV 

function: 

Note: Other than for the PPIRECV name itself, the order of the operands is not 

important: 

PPIRECV 

Specifies the PPIRECV function and must be the first subparameter after the 

subsystem name. 
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'ID=name' 

Nominates the PPI receiver name. name must be a valid PPI receiver name. 

The name must not be defined to PPI at the time the data set is opened or, if 

defined, must not be active. This operand is required. 

'APF=option' 

Allows you to specify whether or not PPI senders must be APF authorized to 

send to this name.  

NO 

Specifies that senders do not need APF authorization.  

YES 

Specifies that senders must be APF authorized. 

Default: NO 
 

'IQEMPTY=option' 

'QEMPTY=option' 

Specifies the action to take when a PPI Queue Empty return code (30) is 

returned. The two operands allow a different action to be taken for the initial 

read request (IQEMPTY), and for all subsequent read requests (QEMPTY). 

The following actions can be specified:  

EOF 

Specifies that an end-of-file is returned to the application. This is the 

default for QEMPTY. 

WAIT (WAIT) 

Specifies that an indefinite wait is performed until data is queued.  

(WAIT,n) 

Specifies that a wait for an interval of n seconds is performed. n is in the 

range 1 through 86400. If no data arrives in this interval, an end-of-file 

is returned. 

Default: WAIT 

'MAXQUEUE=n' 

Specifies the PPI receiver buffer queue limit. The value of n must be in the 

range 1 through 9999. 

Default: 10. 
 



USER, USERI, and USERO Facilities 

 

48  SOLVE Subsystem Interface Guide 

 

'COPY=ddname' 

'FILTER=parms' 

Allow for copying and filtering of data. 

Note: Because PPIRECV is an input facility, the filtering is performed on 

records received from PPI, before being returned to the application as input 

records.  

Notes: 

You need to consider the following: 

■ If the program opens the file as RECFM=F or FB, short input records are 

padded with blanks to the LRECL. 

■ Records that are too long cause an I/O error. 

■ Use of IQEMPTY and QEMPTY can allow you to set up a job to wait indefinitely 

for initial input, then process input until no more arrives in a certain time, 

then return EOF and terminate. 

■ If you are filtering, you may not get a return on input for several wait 

intervals. This is because, if the filter program rejects the input record, the 

wait is re-executed. 
 

USER, USERI, and USERO Facilities 

The USERx facilities let you supply your own DD SUBSYS I/O routines. This is an 

open-ended facility. If one of the supplied functions does not allow you to do 

what you want to do, then you can use the USERx facilities to implement it. 

Full details on the API for the user program are provided as well as a sample. 
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USERx DD SUBSYS Operands 

The following DD SUBSYS operands are used with the USERx function: 

Note: Other than for the USERx name itself, the order of the operands is not 

significant. 

USER 

USERI 

USERO 

Specifies the user function to be performed and must be the first 

subparameter after the subsystem name. 

USER 

Enables the user program to handle most data set options. The only 

option that is blocked by the SOLVE SSI front-end is the use of ASY mode 

I/O. 

USERI 

Enables the user program to handle sequential input only. This is the 

most common type of input processing and removes the need for the 

user program to validate ACB and RPL options. 

USERO 

Enables the user program to handle sequential output only. This is the 

most common type of output processing and removes the need for the 

user program to validate ACB and RPL options. 

'PGM=pgmname' 

Names the user program. pgmname must be a valid program name. The 

program must be available for loading at OPEN time (for example, in the 

STEPLIB or link list). 

The user program need not be APF-authorized, unless the application 

opening the file is APF-authorized, in which case the user program must 

come from an APF-authorized library. The PGM operand is required. 
 

'PARM=parm' 

Provides an optional one-character to eight-character parameter to be 

passed to the user program. If specified, the value must be in a valid 

partitioned data set (PDS) name format. If omitted, an 8-character value of 

all blanks is used. 
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'COPY=ddname' 

'FILTER=parms' 

Enables the copying and filtering of data.  

If the file is being written to, filtering and copying occur before the user 

program is called. Records rejected by filtering are not passed to the USER 

program. 

If the file is being read, filtering and copying are performed on the records 

provided by the USER program. If the filter program rejects a record, the 

user program is called to provide another one. 

Note: A sample user program is provided in source form (UTIL0038 (see 

page 69)).  
 

FILTER Exit API 

This section describes the supplied API that lets you write a filtering program. 

The filter program can be used to select which records that are written to or read 

from a DD SUBSYS facility are actually processed (written records), or returned 

to the requester (records read). 

The filter program can be written in any language that supports standard linkage 

conventions. However, for performance reasons, it is probably best written in 

assembler. 

The sample filter program that is supplied contains extensive comments. 
 



FILTER Exit API 

 

Chapter 4: SSI DD SUBSYS Support  51  

 

APF Authorization 

The use of DD SUBSYS could provide an opportunity to circumvent system 

security. This is because the exit programs run during OPEN and CLOSE 

processing, and normally the system is in supervisor state or has a protection 

key set (to less than 8) at these times. 

Consequently, the following rules are implemented: 

■ If the application program (that is, the job step program) is not APF 

authorized, then the filter exit need not be APF authorized, and need not 

reside in an APF-authorized library. Although it can be APF authorized, and 

can reside in an APF-authorized library, the APF authorization is ignored. 

■ If the application program is APF authorized, then the filter exit must come 

from an APF-authorized library, although the exit need not be APF authorized 

itself. Since APF libraries are normally security protected, this prevents a 

potentially dangerous filter program from being loaded and executed in an 

environment where APF authorization exists. 

Note: Specifying any unauthorized step libraries results in all step libraries 

being considered not authorized for that step. 

■ The OPEN and CLOSE calls to the filter exit are made in the job step TCB key 

and state. 

■ The FILTER calls to the filter exit are made directly from the application, thus 

the system state and key at this time is dependent on the application. 

The above rules mean that a simple application can use a filter program without 

any need to access APF libraries, and so on. Only when using authorized 

applications is there any need to place the filter program in an APF library. 
 

Abnormal Termination (ABEND) 

If the filter program abends during an OPEN or CLOSE call, the ABEND is trapped 

by the DD SUBSYS code and is reflected as an OPEN error (during an OPEN), or 

is ignored (during a CLOSE). 

If the filter program abends during a FILTER call, the ABEND is reflected by the 

application (as the filter program is merely being called as a subroutine of the 

application program). For this reason, you should ensure that the filter program 

is well tested before placing it in a production environment. 
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Dynamic Allocation 

While the user program can open its own files at any time (including during an 

OPEN and a CLOSE call), it cannot make Dynamic Allocation requests during 

OPEN or CLOSE calls. This is because a system ENQ is held, and a call to Dynamic 

Allocation results in an error. 

Thus, the user program should have any required files pre-allocated in the JCL 

before an OPEN is performed on the DD SUBSYS file. 
 

Calling Details 

The filter program is called with registers set up as follows: 

 

Register Content 

R0 Indeterminate. 

R1 Points to a parameter list, as described below. 

R2...R12 Indeterminate. 

R13 Points to a standard 18-word save area. 

R14 Contains the return address and AMODE. 

R15 Contains the entry point and filter exit AMODE. 

In a 31-bit environment, the filter exit is called in the AMODE, as established by 

the linkage editor. It need not return in the AMODE specified in register 14 on 

entry (that is, it can use a BR R14 instruction to return), because the return 

address is guaranteed to be below the line. The caller of the filter exit restores its 

own AMODE. 

For the OPEN and CLOSE calls, the PSW key and state is as for the job step 

program (normally key 8, problem state). 

For the FILTER calls, the PSW key and state is as for the application program at 

the time it issued the I/O request. This is normally key 8, problem state. 

On completion, the filter program must restore registers 2 through 12 to the 

values they had when the filter program started processing. 
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Return Codes 

The filter exit sets a return code in register 15 to reflect the results of its 

processing. 

Setting a non-zero value for the OPEN call means that the attempted opening of 

the data set failed. An optional error message can be supplied in this case. 

The return code for the CLOSE call is ignored. 

A non-zero return code for the FILTER call means that the current record is to be 

rejected. 
 

Reentrancy 

The filter exit need not be written to be reentrant. However, if the same filter exit 

is to be used for more than one DD SUBSYS filter in a single job step, it is a good 

idea to make it reentrant. This is because each OPEN will cause a separate 

non-reentrant copy to be loaded. However, at CLOSE time, there is no way to tell 

the system which copy is to be deleted. This means that an active copy of the exit 

could be deleted instead of the one that has been closed. 
 

Parameter List 

The parameter list for the filter exit is provided by the Assembler macro 

$NMDDSFP. The following are described: 

■ The individual fields in the parameter list, including the name of the pointer 

in the parameter list 

■ The target field 

Note: The parameter list is pointed to by register 1 on entry to the filter exit. 

Many of the parameters are in storage and cannot be altered by the filter exit. 

FPLS@FC 

A pointer to a binary full word that contains a function code. The function 

code determines what processing is required. Valid function code values are: 

0-OPEN CALL 

4-CLOSE CALL 

8-FILTER CALL  

FPLS@DDN 

A pointer to the eight-character, blank padded ddname for the file being 

filtered. This ddname is in protected storage and cannot be altered. 
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FPLS@PRM 

A pointer to the eight-character, blank padded parameter value specified as 

the filter (for example: 'FILTER=(MYPGM,MYPARM)' would result in the 

parameter being CL8'MYPARM'). If no value is specified, then the field is 

blank. 

This parameter value is in protected storage and cannot be altered. 

Note: If a value is specified, it is edited to be a valid ddname (or PDS 

member name). This means that no editing is required if you want to use it as 

a ddname or member name (although obviously you need to test for the 

existence of the ddname or member name).  

FPLS@JFC 

A pointer to the Job File Control Block (JFCB) for the file. This control block 

contains various useful fields, such as the DSNAME (assuming one was 

specified along with the SUBSYS parameter; otherwise a system-generated 

name is provided). 

The IEFJFCBN mapping macro maps this control block. The JFCB is in 

protected storage. 
 

FPLS@UWD 

A pointer to a four-byte, aligned area, initialized to binary zeros prior to the 

OPEN call. You can update this value. The updated value is then passed to 

subsequent FILTER calls and to the CLOSE call. If the value is further 

updated, then the new value is passed on subsequent calls. 

An excellent use for this field is to anchor a work/save area that you obtain 

on the OPEN call. This makes it very easy to make the filter program fully 

reentrant. 

Note: If a non-zero return code results from the OPEN call (that is, the OPEN 

fails), then the program is not called again. In this case, any work areas 

obtained should also be freed, as the CLOSE call is unable to free them later. 
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FPLS@FLG 

A pointer to a one-byte flag, in protected storage. This flag contains several 

useful equated bits (the equates are in $NMDDSFP):  

FFLG1OIN X'80' 

The file is open for input. 

FFLG1OOT X'40' 

The file is open for output (FFLG1OIN can also be set). 

FFLG1OUP X'20' 

The file is open for update (both FFLG1OIN and FFLG1OOT are set). 

FFLG1CCH X'01' 

The file is open for output and there are control characters present (that 

is, the original data set had A or M in the RECFM). 

FPLS@LEN 

A pointer to a length field. 

■ For the OPEN call, it points to a full word in protected storage that has the 

value F'120'-this is the length of the supplied error message return area. 

■ For the CLOSE call, it points to a full word in protected storage that has 

the value F'0'. 

■ For the FILTER call, it points to a full word that contains the length of the 

record that is to be filtered. Note that this value is not in protected 

storage, but that altering it will not have any effect on other processing. 
 

FPLS@REC  

A pointer to the record area. 

■ For the OPEN call, it points to a 120-byte, blanked area. This area can be 

used to return an error message when you return a non-zero return code 

to fail the open. In this case, if the area is not blank, the message is sent 

through WTO to inform of the open failure reason. 

■ For the CLOSE call, it points to a full word F'0' in protected storage. 

■ For the FILTER call, it points to the record to be filtered. This record must 

not be altered. There is no guarantee that you will be able to access 

storage past the length pointed to by FPLS@LEN. 

The record starts with the control character, if one is present.  

FPLS@ACB 

A pointer to the ACB for the file. On OPEN, this ACB is a copy in protected 

storage. On CLOSE and FILTER, this is the real ACB. It must not be altered. 
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FPLS@RPL 

A pointer to the RPL for the I/O request. For OPEN and CLOSE, it points to a 

dummy full word 0 in protected storage. For I/O, it points to the real RPL. 

Because the record address, length, handle control character prefixing, and 

LOCATE mode are provided, there should be little need to actually refer to 

the RPL.  

The parameter list provides all the information that is needed to perform record 

filtering. 
 

Sample Filter Exit 

A sample filter exit, UTIL0037 (see page 65), is supplied in source form. It 

illustrates the use of the filter parameters to provide a general-purpose filter 

facility. 
 

USERx Facility API 

This section describes the API that lets you write your own DD SUBSYS I/O 

handler. 

The user program can be used to replace any DD SUBSYS function with your own 

code. Some suggestions are: 

■ Reformatting files for programs that cannot be rewritten 

■ Encryption and decryption of data without intermediate files 

■ Real-time monitoring of messages 

The user program can be written in any language that supports standard linkage 

conventions. However, for performance reasons, it is best written in assembler. 

The user program includes extensive comments. 
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APF Authorization 

The use of DD SUBSYS could provide an opportunity to circumvent system 

security. This is because the user programs run during OPEN and CLOSE 

processing, and normally the system is in supervisor state or has a protection 

key set (to less than 8) at these times. 

To avoid security exposure, the following rules are implemented: 

■ If the application program (that is, the job step program) is not APF 

authorized, then the user program need not be APF authorized, and need not 

reside in an APF-authorized library. Although it can be APF authorized, and 

can reside in an APF-authorized library, the APF authorization is ignored. 

■ If the application program is APF authorized, then the user program must 

come from an APF authorized library, although the program need not be 

APF-authorized itself. Since APF libraries are normally security protected, 

this prevents a dangerous user program from being loaded and executed in 

an environment where APF authorization exists. 

Note: Specifying any unauthorized step libraries results in all step libraries 

being considered not authorized for that step. 

■ The OPEN and CLOSE calls to the user program are made in the job step TCB 

key and state. 

■ The I/O calls to the user program are made directly from the application, 

thus the system state and key at the time is dependent on the application. 

The above rules mean that a simple application can use a user program without 

any need to access APF libraries, and so on. Only when using authorized 

applications is there any need to place the filter program in an APF library. 
 

Abnormal Termination (ABEND) 

If the user program abends during an OPEN or CLOSE call, the ABEND is trapped 

by the DD SUBSYS code and reflected as an OPEN error (during an OPEN call), or 

is ignored (during a CLOSE call). 

If the user program abends during an I/O call, the ABEND is reflected by the 

application (as the user program is merely being called as a subroutine of the 

application program). For this reason, ensure that the user program is well 

tested before placing it in a production environment. 
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Supported I/O Requests 

The USERx facilities allow most I/O requests to be processed. The restrictions are 

as follows: 

■ For the USER option, any Open mode is allowed. The only I/O option that is 

not allowed is ASY (asynchronous). 

■ For the USERI option, Open For Input Only is allowed. The only I/O request 

that is permitted is for synchronous input. 

■ For the USERO option, Open For Output is required. The only I/O request that 

is permitted is for synchronous output. 

■ The DD SUBSYS code always checks and disallows illogical conditions such as 

PUTLOCATE (not allowed by VSAM). 

■ The API hides most details of the ACB/RPL interface. Only the USER option 

needs to examine the ACB and RPL. USERI and USERO are protected from 

most things, including the use of GETLOCATE. 
 

Dynamic Allocation 

While the user program can open its own files, and so on, at any time (including 

during the OPEN and CLOSE calls), it cannot make dynamic allocation requests 

during OPEN or CLOSE calls. This is because a system ENQ is held and calling 

dynamic allocation results in an error. 

Thus, the user program should have any required files pre-allocated in the JCL 

before an OPEN is performed on the DD SUBSYS file. 
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Calling Details 

The user program is called with registers set up as follows: 

 

Register Content 
 

R0 Indeterminate. 
 

R1 Points to a parameter list, as described below. 
 

R2...R12 Indeterminate. 
 

R13 Points to a standard 18-word save area. 
 

R14 Contains the return address and AMODE. 
 

R15 Contains the entry point and filter exit AMODE. 

In a 31-bit environment, the user program is called in the AMODE, as established 

by the linkage editor. It need not return in the AMODE specified in R14 on entry 

(that is, it can just use a BR R14 instruction to return), because the return 

address is guaranteed to be below the line. The caller of the user program 

restores its own AMODE. 

■ For the OPEN and CLOSE calls, the PSW key and state is as for the job step 

program (normally key 8, problem state). 

■ For the I/O calls, the PSW key and state is as for the application program at 

the time it issued the I/O request. This is normally key 8, problem state. 

On completion, the user program must restore registers 2 through 12 to the 

values they had when the user program started processing. 
 

Return Codes 

The user program reflects its processing by setting a return code in register 15. 

Setting a non-zero value for the OPEN call means that the OPEN of the data set 

failed. An optional error message can be supplied in this case. 

The return code is ignored for the CLOSE call. 

A non-zero return code for the I/O call causes an RPL logical error code to be set, 

unless the user program has already set a return error code. This means that you 

should normally return R15 = 0. 
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Reentrancy 

The user program need not be written to be reentrant. However, if the same user 

program is to be used for more than one DD SUBSYS file in a single job step, it is 

a very good idea to make it reentrant. This is because each OPEN causes a 

separate, non-reentrant copy to be loaded. However, at CLOSE time, there is no 

way to tell the system which copy is to be deleted. This means that a still active 

copy of the program could be deleted, instead of the one that has been closed. 
 

Parameter List 

The Assembler macro $NMDDSFP provides the parameter list for the filter exit. 

The following are described: 

■ The individual fields in the parameter list, including the name of the pointer 

in the parameter list 

■ The target field 

Note: The parameter list is pointed to by register 1 on entry to the filter exit. 

Many of the parameters are in storage and cannot be altered by the filter exit. 

UPLS@FC 

A pointer to a binary fullword that contains a function code. The function code 

determines what processing is required. The function code values are: 

0-OPEN call 

4-CLOSE call 

8-I/O call (see UPLS@IOF)  

UPLS@DDN 

A pointer to the eight-character, blank-padded ddname for the file being 

processed. This ddname is in protected storage and cannot be altered.  

UPLS@PRM 

A pointer to the eight-character, blank-padded parameter value supplied as 

the value for the PARM operand (for example, 'PGM=MYPGM', 

'PARM=MYPARM', would result in the parameter being CL8'MYPARM  '). If no 

value is supplied, then the field is blank. 

Note: If a value is supplied, it is edited to be a valid ddname (or PDS member 

name). This means that no editing is required if you want to use it as a 

ddname or member name (although obviously you need to test for ddname 

or member name existence). 

This parameter is in protected storage and cannot be altered. 
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UPLS@NME 

A pointer to the eight-character, blank-padded USERx name. The value is 

USER, USERI, or USERO. By checking this value on OPEN, you can ensure 

that the I/O calls are made only for expected values (for example, if the 

value is USERI, we guarantee that only synchronous GET requests are 

allowed). 

If you allow the value USER, you need to be prepared to handle any I/O 

request type (particularly if the application opens an ACB as if it were a VSAM 

file). 

UPLS@UWD 

A pointer to a four-byte, aligned area, initialized to binary zeros before the 

OPEN call. You can update this value. The updated value is then supplied to 

subsequent I/O calls and to the CLOSE call. If the value is further updated, 

then the new value is supplied on subsequent calls. 

An excellent use for this field is to anchor a work/save area that you obtain 

on the OPEN call. This use makes it easy to make the USER program fully 

reentrant. 

Note: If a nonzero return code results from the OPEN call (that is, the OPEN 

fails), then the program is not called again. In this case, any work areas 

obtained should also be freed, as the CLOSE call is unable to free them later. 

UPLS@FLG 

A pointer to a 1-byte flag that is in protected storage. This flag contains 

several useful equated bits (the equates are in $NMDDSUP):  

UFLG1OIN X'80'  

The file is open for INPUT. 

UFLG1OOT X'40' 

The file is open for OUTPUT (UFLG1OIN can also be set). 

UFLG1OUP X'20' 

The file is open for UPDATE (both UFLG1OIN and UFLG1OOT are set). 

UFLG1FIX x'02' 

The data set records are fixed length. 

UFLG1CCH X'01' 

The file is open for output and there are control characters present (that 

is, the original data set had A or M in the RECFM). 
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UPLS@RLN 

A pointer to a binary halfword (two bytes long) that contains the maximum 

record length. This is the record length as defined on OPEN and is data only. 

When UFLG1FIX is on, this value is useful for determining the correct record 

length to return for GET requests to prevent I/O errors. 

This field is in protected storage and cannot be altered. 

UPLS@IOF 

A pointer to the I/O function code for I/O calls only (points to a dummy 

fullword 0 for OPEN/CLOSE). The values of this function code are re-equated 

in the IFGRPL Assembler macro for the RPLREQ field. The field is a binary 

fullword. 

To avoid the need for USERI and USERO programs to refer to the IFGRPL 

macro, the GET and PUT equates are defined in the $NMDDSUP macro: 

RPLGET     X'00000000'    (UPLSFGET) 

RPLPUT     X'00000001'    (UPLSFPUT) 

UPLS@IOA 

A pointer to an I/O area. 

■ For OPEN, points to a 120-byte blank-padded error message area. You 

can set an error message here for output if you fail the OPEN call. 

■ For CLOSE, points to a fullword 0 in protected storage (cannot be written 

to). 

■ For I/O (GET/PUT requests only for the USER program), points to an I/O 

area. This area might or might not be the actual user I/O area, but this is 

not significant. A work I/O area is supplied in the case of GET LOCATE. 

■ For other I/O requests (other than GET/PUT), it points to a fullword 0 in 

protected storage. 
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UPLS@IOL 

A pointer to the length field for I/O. 

■ For OPEN, points to a fullword with the value 120 (the length of the error 

message area) in protected storage. 

■ For CLOSE, points to a fullword 0 in protected storage. 

■ For PUT I/O requests, points to a fullword that contains the length of the 

record being output. 

■ For GET I/O requests, points to a fullword containing the length of the 

I/O area. You must update this fullword to be the actual length of the 

record that you are providing. 

Note: You do not need to make any special considerations for GET 

LOCATE, as a dummy record area is supplied in this case. 

■ For other I/O requests (USER only), points to a fullword 0 in protected 

storage. 

UPLS@ERF 

A pointer to a 2-byte error return field for I/O procedures. 

■ For OPEN and CLOSE, points to a fullword 0 in protected storage. 

■ For I/O, points to a 2-byte field that is initialized to binary zeros. This 

field is where you can return RPL error codes as required. If no errors are 

to be returned, then these fields can be ignored. 

The first byte must be set to X'08' for a logical error, or X'0C' for a physical 

error. 

The second byte must be set to the reason code. For example, if you are 

returning a logical error (X'08'), you could set X'04' for EOF (input) or X'1C' 

for data set full (output). 

If you set a nonzero value in the first byte other than 08 or 0C, or set a 

nonzero value in the second byte and leave byte 1 zero, then the interface 

routines force an error code of X'08' with reason code X'DA'. 

Note: If you want the RPL error fields to be set directly, you leave these 

fields set to zero. 

UPLS@DSN 

A pointer to the 44-character data set name (dsname). 

This name is the dsname specified in the DD SUBSYS statement or a 

system-generated name if you did not specify a dsname. This field is in 

protected storage and cannot be altered. 
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UPLS@ACB 

A pointer to the ACB for the file. 

■ For OPEN, this ACB is a copy in protected storage. 

■ For CLOSE and I/O, this is the real ACB. The value must not be altered. 

Note: If the application program opened a DCB, this ACB is the dummy one 

built by the SAMSII routines. 

If you want to map the ACB, the appropriate Assembler macro is IFGACB. 

UPLS@DEB 

A pointer to the DEB for the file. 

This is a dummy DEB as built for DD SUBSYS files. The value is in protected 

storage and cannot be altered. The IEZDEB Assembler macro maps this 

control block. 
 

UPLS@JFC 

A pointer to the Job File Control Block (JFCB) for the file. This control block 

contains various useful fields, such as DSNAME (assuming that one was 

specified with the SUBSYS parameter; otherwise, a system-generated name 

is supplied). 

The IEFJFCBN Assembler mapping macro maps this control block. The JFCB 

is in protected storage. 
 

UPLS@SOB  

For OPEN and CLOSE, points to the SSOB for the OPEN (SSOBFUNC=16) and 

CLOSE (SSOBFUNC=17) calls. 

The SSOB can be used to locate other SSI control blocks. These control 

blocks are all in protected storage. The IEFJSSOB DA Assembler macro can 

be used to obtain the SSOB and OPEN/CLOSE extension maps. 

For I/O, the pointer is a zero (that is, it points to nothing). 

UPLS@RPL 

A pointer to the RPL for the I/O request. 

■ For OPEN and CLOSE, points to a dummy fullword 0 in protected storage. 

■ For I/O, points to the real RPL. Because the record address and length 

are provided, and control character prefixing and LOCATE mode (and so 

on) are handled automatically, there is little requirement to refer to the 

RPL. 

USER programs can refer to the RPL for exotic option flags, KEY pointers, and 

so on. 

The IFGRPL Assembler macro maps this control block. 
 

Note: The parameter list provides all the information that is required to perform 

your own I/O processing. 
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Sample USER Program Exit 

A sample filter exit, UTIL0038 (see page 69), is supplied in source form. It 

illustrates the use of the USER facility to provide a simple encryption/decryption 

facility.  
 

Sample FILTER Exit: UTIL0037 

To illustrate the FILTER facility, a sample filter exit program, UTIL0037, is 

supplied (in source form as well as in compiled form). 

This section explains how UTIL0037 is used by filter records. 
 

UTIL0037 Processing 

UTIL0037 filters records by referring to a control table, which is built at OPEN 

time from a sequential file of control statements. 

This file of control statements is named (ddname) by the PARM option of the 

FILTER operand. 

Example 

//OUTFILE  DD  SUBSYS=(NMSS,WTO, 

//             'FILTER=(UTIL0037,FILTCTL)') 

//* 

//FILTCTL  DD  DSN=MY.FILTER.CONTROL,DISP=SHR 

Each record to be filtered is actioned against the filter table and accepted or 

rejected based on strings in the record. 

If there are syntax errors in the control file, the attempted OPEN fails and an 

error message is generated that includes the line in error. 
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Control File Format 

The control file for UTIL0037 is in the following format: 

■ The control file must be F or FB, LRECL=80. It can be a sequential file or a 

PDS member (specify the member name on the DD statement for the control 

file). 

■ Only columns 1 through 72 of the input record are examined. 

■ Blank lines are ignored. 

■ Lines with an asterisk (*) as the first non-blank character are ignored and 

thus can be used as comments. 

■ All other lines must contain valid control statements. 
 

Filter Processing 

UTIL0037 processes a record to be filtered as follows: 

■ The record is processed against each statement in the control file in turn. 

■ Some statements can cause the record to be immediately accepted or 

rejected. In this case, a return to DD SUBSYS is made with the appropriate 

return code (0 for ACCEPT, 4 for REJECT). 

■ If the record reaches the bottom of the control file, then it is implicitly 

accepted. 
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Control Statements 

In the following descriptions, string is a character string containing any 

characters (including unprintable ones), delimited by a pair of one of the 

following characters:  /, \, ¢, and |. 

Whatever opening delimiter is used, it cannot appear in the string and must be 

the closing delimiter. The closing delimiter must be followed by a blank. 

The following control statements are recognized: 

BASE n 

Provides a way to set a logical column number. 

By default column 1, as used by the other statements, corresponds to the 

first byte of a record, unless the file is open for output and has control 

characters. In this case, column 2 is used as logical column 1. 

By specifying BASE n, you nominate which column (n) of the record is to be 

treated as column 1. 

Note: Because the other statements do not permit a column number less 

than 1, you cannot back up to columns before the logical column set by the 

BASE statement. 

The BASE statement affects any following statements, and you can have 

several BASE statements in the control file. 

There is a default BASE 1 or BASE 2 statement assumed at the start of the 

control file (the position depends on the presence of a control character). 
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REJECT string [ scol [ ecol ] ] 

ACCEPT string [ scol [ ecol ] ] 

SELECT string [ scol [ ecol ] ] 

Describes a set of records that are to be rejected, accepted, or selected by 

filtering. 

For REJECT, if the match criteria is satisfied, then the current record is 

immediately rejected by filtering. 

For ACCEPT, if the match criteria is satisfied, then the current record is 

immediately accepted by filtering. 

For SELECT, if the match criteria is not satisfied, then the current record is 

immediately selected by filtering. 

If neither scol or ecol are provided, then the string must match in the current 

logical column 1 (see the description for the control statement BASE n in this 

table). 

If just scol is provided, then it is either the starting logical column for the 

string to be in (a number from 1 to 32760), or it can be an asterisk, meaning 

anywhere in the input record (from logical column 1 onward). 

If ecol is provided, it sets a logical column range for the string to occur in. 

ecol cannot be specified if scol is an asterisk. ecol can be either a number 

(greater than or equal to scol plus the length of the string minus 1) or an 

asterisk, meaning anywhere from scol to the end of the record. Note that ecol 

sets the ending column position for the end of the string. So ACCEPT /XYZZY/ 

10 20 says search for 'XYZZY' starting in columns 10, 11, 12, 13, 14, and 15. 

REJECT * 

ACCEPT * 

SELECT * 

Provides a way of altering the default action at the bottom of the table. By 

default, a record that reaches the bottom of the table is accepted because it 

has passed the filtering process. However, you may want to reject all records 

that pass the filtering process. 

Specifying ACCEPT, REJECT, or SELECT with an asterisk instead of a string 

means: match everything and perform the action. 

By default, an ACCEPT * is generated. However, a REJECT * at the end of the 

table discards (rejects) all records that get that far. Do not code any other 

statements after a REJECT *, SELECT *, or ACCEPT *, because they will 

never be actioned. 
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Sample Filter Table 

The following sample filter table illustrates how to use the statements: 

* SAMPLE FILTER TABLE FOR UTIL0037 

* 

* FILTER OUTPUT FROM IEBCOPY TO SHOW ERROR MSGS ONLY. 

* 

* 

* NOTE THAT THIS IS FOR A PRINT FILE.  WE USE THE DEFAULT BASE WHICH 

* MEANS THAT COLUMN 2 (AFTER CTL CHATS) IS LOGICAL COLUMN 1. 

* 

* 

* REJECT PAGE HEADERS AND STATEMENT ECHOES (BLANK COL 1) 

* 

REJECT  / PAGE / 110 

REJECT  / /      1 

* 

* SELECT END-OF-JOB MSG 

* 

ACCEPT  /IEB147I/ 

* SELECT ANY E MSGS (3 OR 4 DIGIT NUMBERS) 

ACCEPT  /E/ 7 

ACCEPT  /E/ 8 

* REJECT THE REST 

REJECT * 
 

Sample USER Exit: UTIL0038 

To illustrate the USERx facility, a sample user exit program, UTIL0038, is 

supplied (in source form as well as compiled). 

This section discusses the use of UTIL0038 (as supplied) to encrypt and decrypt 

data. 
 

UTIL0038 Processing 

UTIL0038 processes in two modes, depending on whether it is being used for 

input (USERI), or output (USERO). If called by USER (not USERI or USERO), the 

attempted OPEN fails. 
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UTIL0038 USERI Processing 

When being used to process input, UTIL0038 reads from a data set (the ddname 

supplied in the PARM operand), decrypts records, and provides them to the 

application as input. 

The ddname named on the PARM operand must reference a data set that was 

written as an output file by some other invocation of UTIL0038. 

The DCB attributes for the data set that UTIL0038 reads are RECFM=VBS, 

LRECL=32760, BLKSIZE=6233. These are the same attributes that it writes. 

The DCB attributes for the DD SUBSYS data set are irrelevant. However, if 

records of an incorrect length are returned, I/O errors result. 
 

UTIL0038 USERO Processing 

When used to process output, UTIL0038 writes to a data set (the ddname 

supplied as the value for the PARM operand), encrypting the written records (that 

is, those provided by the application as output). 

The ddname supplied as the value for the PARM operand must reference a data 

set. The DCB attributes of this data set are forced to RECFM=VBS, 

LRECL=32760, BLKSIZE=6233. 

The DCB attributes for the DD SUBSYS data set are irrelevant. UTIL0038 writes 

variable length records to its output file. 
 

UTIL0038 Encryption 

The encryption logic used is very simple and is only supplied to illustrate what is 

possible. 

Encryption is to simply XOR (exclusive OR) the record against a table that 

contains the values X‘FF’ down to X‘00’. This operation is reversible by simply 

redoing the XOR. 

Note: This encryption technique is not foolproof. Do not attempt to use this 

program to provide data security. 

Examining the source of UTIL0038 shows how to easily write USERI or USERO 

programs. It illustrates how to write the exit to be reentrant, how to use the 

various parameters supplied, how to return OPEN errors, and so on. 
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Chapter 5: Non-VTAM Terminal Support 
 

This section contains the following topics: 

Overview (see page 71) 

Implement Non-VTAM Terminal Support by Using a Local Terminal (see page 71) 

Use a Non-VTAM Terminal (see page 76) 

Implement Non-VTAM Terminal Support by Using Telnet (see page 79) 

Connect to a Region by Using Telnet (see page 79) 
 

Overview 

There are times when you want to be able to use terminals to communicate with 

regions while VTAM is not available. For example, during system IPL, you might 

want to log on and run automation in full-screen mode without waiting for VTAM 

to become active. 

A region can provide non-VTAM support in the following ways: 

■ By using a local terminal as a non-VTAM terminal 

■ By using Telnet 
 

Implement Non-VTAM Terminal Support by Using a Local 

Terminal 

Non-VTAM terminal support is implemented by using the SSI access method. 

This method supports communication between a local terminal attached to a 

program called NMSSI (SOLVE SSI) and up to 16 regions. 
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Sysplex Support 

In a sysplex environment, you can use the cross-system coupling facility (XCF) to 

enable a local terminal to access a region on another system. The following 

illustration shows an example: 

 

To register the SSI region to the XCF component, add the XCF=YES parameter in 

the SSISYSIN or SSIPARMS (if used) member. 
 

Enable Terminal Support in SSI 

An SSI startup parameter, TERMINALS={YES|NO}, is used to specify whether 

the NMSSI program is to provide support for non-VTAM terminals. 

If TERMINALS=YES is specified, communications for terminals are initialized 

when the NMSSI program is initialized. 

The TERMINALS parameter is specified in the SSISYSIN or SSIPARMS (if used) 

member. If you want to implement non-VTAM terminal support you need to set 

this parameter to YES. 

Note: If you are running multiple SSI regions on a single system, only one of 

them may be set up for non-VTAM terminals. 

You need to review other startup parameters for the SSI (in particular, the SSID 

parameter). 
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Specify Accessible Regions 

To specify the regions that can be accessed by the terminals attached to an SSI 

region, add TERMACCESS parameters to the SSISYSIN or SSIPARMS (if used) 

member. 

You can specify up to 16 TERMACCESS parameter statements. 
 

Enable Automatic Logon to a Region 

The automatic logon parameter for a non-VTAM terminal is set in the SSI 

parameter group. 

When automatic logon is enabled for a terminal, the terminal is automatically 

logged on to the region specified in the first TERMACCESS parameter statement 

only. 
 

TERMACCESS Parameter 

A TERMACCESS parameter specifies the region that a non-VTAM terminal can 

access and the function key that is used to access the region. 

TERMACCESS=(PFnn,region-id,description) 

PFnn 

Specifies the function key that is used to access the region-id region. 

nn must be in the ranges 5 through 12 and 17 through 24. 

region-id 

Specifies the ID of a region that a terminal can access. If you registered the 

SSI regions with the XCF component in a sysplex environment, the region 

does not need to be on the same system. 

region-id is specified in the SYSTEMID parameter group. The default is the 

value specified for the PRI= JCL parameter in the RUNSYSIN member. 

description 

Specifies a short description to identify the region that the function key 

accesses. This description is displayed on a terminal function key menu. 

To represent a blank character, use an underscore. 

Limits: 1 to 20 characters; quoted strings not supported 

Example 

The following example enables you to press PF11 to access the PROD region from 

a non-VTAM terminal. 

TERMACCESS=(PF11,PROD,REGION_1) 
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Attach and Detach Terminals 

The ATTACH and DETACH commands can be used to attach terminals to and 

detach terminals from NMSSI. 

When you use these commands, you need to specify the device address of the 

terminal you want to attach or detach. NMSSI uses this address to dynamically 

allocate and deallocate the device. 

Example: Attach a Device 

The following example attaches device 4DF: 

ATTACH 4DF 

Example: Attach a Device and Notify Region 

The following example attaches device 4DF and assigns it the name TERMNAME. 

The accessed region is notified of the attachment, and the user’s details are 

specified. 

ATTACH 4DF NAME=TERMNAME AUTOLOG=YES DATA=USERID PASSWORD OPT 

Example: Detach a Device 

The following example detaches the device 4DF: 

DETACH 4DF 

Example: Detach All Devices 

The following example detaches all devices: 

DETACH ALL 
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Define Terminal Names 

Non-VTAM terminal support allows both 3-character and 4-character terminal 

addresses. 

NMSSI assigns an eight-character symbolic name to a terminal that consists of a 

1 to 5-byte prefix followed by the terminal device address. 

If a terminal has a 4-character address and the first character is not zero (for 

example, 1FFF), you must limit the length of the prefix to four characters. 

The symbolic name prefix defaults to $LOCL—you can, however, specify a 

different prefix using the TPREFIX operand in NMSSI startup parameters. 

You can also specify a terminal name through the NAME operand of the ATTACH 

command. This name overrides the name specified in the TPREFIX operand for 

the terminal being attached. 
 

Activate the SSI 

You need to activate the SSI before you can use the non-VTAM terminal support 

facility. 
 

Display Attached Terminals 

The SHOW SSITERMS command displays terminals attached to NMSSI. 
 

Control Non-VTAM Terminals Through Customization Parameters 

Terminals that are attached to the region through NMSSI can also be controlled 

through the SSI parameter group. This parameter group provides a panel-driven 

interface for controlling non-VTAM terminal access (press F1 (Help) on the SSI 

Initialization Parameters panel for additional information). If NMSSI stops and 

restarts, you need to reapply the parameter group. 

To avoid having to reapply the parameter group (that is, to ensure that the 

terminals always remain attached), you can update the NMSSI parameters by 

specifying CMD=‘ATTACH …’ for each terminal. 
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Remote Device System (RDS) Considerations 

When using RDS to control allocations of devices to multiple systems, you need 

to modify the buffer size on the terminal device definition. The buffer size must 

be at least 65. For example, to attach device 04B to the NMSSI, specify the 

following: 

DEFINE DEV ADD=04B, DEVTYPE=3779, BUF=65 
 

Use a Non-VTAM Terminal 

A terminal that is connected through NMSSI initially displays a banner page. 

This screen displays the NMSSI subsystem ID, the system name, the terminal 

name, and the following available function keys: 

ENTER (Menu) 

Displays the NMSSI menu that lists the function keys for accessing the 

defined regions. 

F1 and F13 (Help) 

Displays online help for the non-VTAM terminal facility. 

F3, F4, F15, and F16 (Detach) 

Detaches the terminal from NMSSI. Use the ATTACH command to reconnect 

the terminal to NMSSI. 

F5 through F12 and F17 through F24 (Solve) 

Passes the terminal to the appropriate region for logon if a TERMACCESS 

parameter is defined for that function key. The terminal bypasses EASINET if 

it is active and displays the logon screen. At this point the terminal functions 

as if it were connected through VTAM. 
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Access a Defined Region 

You can access a defined region by pressing the appropriate function key from 

the NMSSI logo screen. You can also press ENTER to display the NMSSI menu 

that shows which function keys are defined and press the appropriate function 

key to access the region. 

The NMSSI logo screen is displayed only when a terminal is first connected to 

NMSSI. Thereafter, the NMSSI menu is your NMSSI interface, for example: 

 SOLV MVS1           *** NMSSI MENU ***           Terminal: $LOCL4DF 
 
 Pfk  Nmid         Sysname  Status     Description 
 PF05 PROD0001     MVS1     IN-SESSION REGION_0001          *OUTPUT* 
 PF06 PROD0002     MVS2     STARTING   REGION_0002 
 PF07 -            -        -          - 
 PF08 -            -        -          - 
 PH09 -            -        -          - 
 PH10 -            -        -          - 
 PF11 PROD1001     MVS1     IN-SESSION REGION_1001          CURRENT 
 PF12 PROD1002     MVS2     INACTIVE   REGION_1002 
 PF17 -            -        -          - 
 PF18 -            -        -          - 
 PF19 -            -        -          - 
 PF20 -            -        -          - 
 PF21 -            -        -          - 
 PF22 -            -        -          - 
 PF23 -            -        -          - 
 PF24 -            -        -          - 
 
 
 
 
 F1/13=Help  F3/15=Logoff Current F4/16=Detach  Enter/Sysreq=Current 

 

Use the SYSREQ Key 

Use the SYSREQ key to switch between a region and the NMSSI menu. By 

returning to the NMSSI menu, you can establish multiple sessions and access 

them any time by pressing the appropriate function key. 
 

Terminate a Session 

Press F3 (Logoff Current) to terminate the session to the last accessed region. 

To terminate another region from the NMSSI menu 

1. Press the appropriate function key to access the region to make it current. 

2. Press SYSREQ to return to the menu. 

3. Press F3 to terminate the session. 
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Session Status 

Sessions displayed on the NMSSI menu can have the following statuses: 

CONNECTED 

Indicates that the region is connected to an SSI region. 

INACTIVE 

Indicates that the region is not connected to an SSI region. 

IN-SESSION 

Indicates that the terminal has an active session with the region. 

STARTING 

Indicates that the terminal is establishing a session with the region. 
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Implement Non-VTAM Terminal Support by Using Telnet 

You can customize the TCP/IP interface to support Telnet connections. 

To enable Telnet access 

1. Enter the /PARMS shortcut at the prompt. 

The region initialization parameter groups are listed. 

2. Enter F TELNETSRVR to find the TELNETSRVR parameter group. 

3. Enter U beside the parameter group, and complete the fields as follows: 

Allow TELNET Connections? 

Enter Yes. 

Port 1 

Enter Shared to use the port number specified in the Inbound 

Connections Port field of the SOCKETS parameter group. 

Note: If Shared is not suitable (for example, to permit or prevent access 

through a firewall), you can specify up to five port numbers. 

Leave the other fields at their default values. 

4. Press F6 (Action). 

Telnet access is enabled. 

5. Press F3 (File). 

Parameter values are saved so that Telnet access is enabled during region 

initialization. 

After you have enabled Telnet access, users can use Telnet to access the region 

by using the specified port numbers. 

Note: For information about the parameters that you can use to customize 

Telnet access, see the online help. 
 

Connect to a Region by Using Telnet 

To access a region that supports Telnet connections, use the IP address and port 

number that have been set up. 

To get the address and port number, enter SHOW TCPIP in the region to which 

you plan to connect. 
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